

Determination of cannabinoids in food and novel food

State: April 2021

- I. Some facts about hemp
- II. Growing market / new trends
- III. Commission Recommendation (EU) 2016/2115
- IV. Biosynthesis of cannabinoids
- v. Analytes covered by our methods
- vi. Legal requirements
- VII. CBD products
- vill. Analytics

Some facts about Cannabis sativa L.

- Very old cultivated plant
- Used for paper production since 2nd millennium B.C.
- Cannabinoids (> 100 substances known so far): naturally occurring compounds found in the Cannabis sativa plant
- All plant parts except seeds contain cannabinoids
- 2 varieties: drug hemp and fibre hemp (legal in EU if <0.2% THC)
- Glandular hairs
 - On the entire surface of the plant except seeds and roots
 - Secrete a resin (resin consists of 80-90% cannabinoids, the rest is made up of essential oils, phenols, terpenes, waxes)
 - Cannabinoid content correlates with the number of glandular hairs

Some facts about Cannabis sativa L.

- Cannabis sativa L. gains significance in food production
- Hemp seeds contain all 8 essential amino acids in ideal proportions for human nutrition
- Hemp oil has the highest content of unsaturated fatty acids of all vegetable oils.
- Increasingly products which contain highly concentrated the cannabinoid cannabidiol (CBD) are offered in internet shops and special stores.
- Health benefits are promoted for cannabidiol.
- CBD extracts, any products to which they are added, as well as synthetically obtained cannabinoids are considered Novel Foods
- 50 Novel Food applications were under review by the European Commission in December 2020
- Hemp seeds, hemp leaves as feed
- Transfer to food of animal origin

Growing market

New trend: CBD stores

Monitoring of

- Δ9-Tetrahydrocannabinol (Δ9-THC) in food of animal origin
- Δ9-Tetrahydrocannabinol (Δ9-THC), Delta-9-tetrahydrocannabinolic acids and other cannabinoids (e.g. Δ8-THC, cannabinol, cannabidiol and Delta-9tetrahydrocannabivarin) in hemp-derived foods and foods containing hemp or hempderived ingredients.

Method

- Preferably chromatographic separation coupled with mass spectrometry (LC-MS or GC-MS) following an appropriate clean-up step (liquid-liquid (LLE) or solid phase extraction (SPE))
- Separate determination of Δ^9 -THC, its precursors and other cannabinoids

Cannabinoids

		Psychoactive	
Δ9-Tetrahydrocannabinol (THC)	H H O	Yes	 Regulated Hashish: resin (THC content 5-20%) Marijuana: resin-bonded inflorescence shoots (THC content: 0.5-7%) Very low THC content inside the seeds (<2 mg / kg for drug hemp, <0.5 mg / kg for fiber hemp) which only result from contamination
Δ8-Tetrahydrocannabinol	H OH	Yes	 Isomer of Δ9-Tetrahydrocannabinol
Cannabidiol (CBD)	OH HO	Slightly	 Health benefits promoted Currently many products which contain highly concentrated cannabidiol (CBD)
Δ9-Tetrahydrocannabinolic Acid (THCA)	H OH O H OH OH	No	 Precursor of THC At higher temperatures (processing of food, smoking, but also gas chromatography) decarboxylation to THC In fresh plant material approx. 90% of the THC as THCA-A

		Psychoactive	
Cannabidiolic Acid (CBDA)	он он он он но	No	 Precursor of cannabidiol
Cannabigerol (CBG)	HO, JUST CH	No	
Tetrahydrocannabivarin (THCV)	H ^H	No	
Cannabidivarin (CBDV)		No	
Cannabinol (CBN)		No	Oxidation product of THC Characterization of phenotypes: [1] <u>THC + CBN</u> Drug hemp >1 CBD Fibre hemp <1

[1] Anal. Bioanal. Chem. **378**, 183-189 (2004)

- I. Some facts about hemp
- **II.** Growing **market** / new trends
- III. Commission Recommendation (EU) 2016/2115
- **IV. Biosynthesis** of cannabinoids
- v. Analytes covered by our methods
- vi. Legal requirements
- VII. CBD products
- vill. Analytics

Legal requirements

Some cannabinoids have psychoactive effects

The most important psychoactive compound is Δ 9-Tetrahydrocannabinol (THC)

• ARfD: 1 µg/kg bw / day

Acute Reference Dose: estimate of the amount of a substance in food or drinking water that can be consumed over a lifetime without presenting an appreciable risk to health

• LOAEL: 2.5 mg / day

Lowest Observed Adverse Effect Level: lowest dose at which there was an observed toxic or adverse effect

- Maximum THC-content of state-subsidized fibre hemp: 0.2 % (Regulation (EU) No 1307/2013); increased to 0.3%
- Regulation of Cannabis products within Europe is not harmonized
- In Germany (German narcotics act): classification of products as narcotics if THC-content is higher than 0.2 %

Limitation of THC content in food

- Oldest regulation within EU: German guidance values from 1999 (former BgVV German Federal Institute for Consumer Health Protection):
 - Edible oils: 5000 µg/kg
 - Beverages: 5 µg/kg
 - Other food: 150 µg/kg
- Values referred to "total-THC" content (Δ 9-THC + precursor Δ 9-THCA-A)
- Opinion 006/2021 of BfR (German Federal Institute for Risk Assessment)
 - Guidance values are scientifically outdated
 - Recommendations:
 - Toxicological assessment on the basis of the ARfD of 1 μ g/kg bw / day
 - Both analyte contents (Δ 9-THC + precursor Δ 9-THCA-A) should be determined

Limitation of THC content in food

	guidance values (OLD) THC+THCA-A [μg/kg]	limits THC+THCA-A [µg/kg]	limits THC [µg/kg]	limits suggested THC+THCA-A [μg/kg]
Oil from seeds	5.000	5.000	20.000	7.500
Beverages	5		200	
Alcoholic drinks			5	
Other food	150			
Seeds		2.000	10.000	3.000 (incl. powder, cake, bran)
Supplements		2.000		
Bakery			2.000	
Herbal tea			200	
Pasta			2.000	
Plant-based food			1.000	

Evaluation of hemp food

RASFF alerts

RASFF – Rapid Alert System for Food and Feed

54 alerts because of high THC contents within last 10 years

Product category	Number		
Dietetic foods, food supplements, fortified foods	38		
Fats and oils	3		
Seeds	3		
Cocoa, coffee, tea	2		
Confectionery	2		
Other	2	Rapid Alert System for Food a	nd Feed
Fruits and vegetables	1		
Cereals / bakery products	1		
Honey	1		
Prepared meals / snacks	1		

Complex legal evaluation

Crucial question for each product

Is my product food (according to Regulation (EU) 178/2002), drug or pharmaceutical? Narcotic or psychotropic substances are not accepted as food, e.g.:

- Cannabis (flowering or fruiting tops, excluding seeds and leaves)
- Cannabis resin and extracts
- Tinctures of cannabis

In Germany: narcotics act

- Cannabis: narcotics
- Seeds (if not determined for not authorized cultivation)
- Fibre hemp (total THC < 0,2%) if trading only for industrial or scientific purposes which exclude misuse

CBD

European Union Court of Justice (19.11.2020):

CBD is not considered to be a narcotic drug

European Commission (12/2020):

- CBD "… can be qualified as food"
- Single substance CBD and hemp extracts (CBD specifically enriched): rated as "novel" in the Novel Food Catalogue
- European Commission is examining approx. 50 applications for CBD products. This examination of the approval applications has not yet been completed.

Important!

CBD extracts are classified as drugs by most food inspection offices, if Delta 9-THC is detectable

3 Cases

- 1) Narcotic
 - Extracts from flowers and leaves
- 2) Novel Food
 - Products containing isolated (pure) or synthetic CBD (no Delta 9-THC detectable*)
 - Currently no approval (Art. 6 Regulation (EC) 2015/2283)
- 3) Pharmaceutical
 - Especially if health benefits are promoted

* Approx. 85% of analyzed samples contain THC.

Decision tree for evaluation

The majority of cannabinoid-containing products are NOT marketable

- I. Some facts about hemp
- **II.** Growing **market** / new trends
- III. Commission Recommendation (EU) 2016/2115
- **IV. Biosynthesis** of cannabinoids
- v. Analytes covered by our methods
- **vi.** Legal requirements
- **VII. CBD** products
- **VIII.** Analytics

Analytical diversity

Extraction solvent

- Acetonitrile / water / citrate-buffer
- Methanol^{[1][2]}
- Methanol / Dichloromethane
- Benzene
- Ethyl acetate
- Hexane^[3]

Extraction procedure

- Shaking^[1]
- Ultrasonic^{[2][3]}

Cleanup

- "dilute and shoot"^{[2][3]}
- QuEChERS
- Headspace
- SPME
- SPE
- Liquid/liquidseparation^[1]

Detection procedure

- GC-FID^[3]
- GC-MS(/MS)^{[1][2]}
- LC-MS/MS
- LC-UV

Official methods:

- [1] = §64 LFGB (German Food and Feed Act), ASU L 13.04.19-1:
- [2] = §64 LFGB (German Food and Feed Act), ASU L 47.00-9:
- [3] = Regulation (EU) No. 809/2014, Appendix:

Determination of total Δ 9-Tetrahydrocannabinol (THC) in hemp oil Determination of total Δ 9-Tetrahydrocannabinol (THC) in hemp containing tea-like products Community method for the quantitative determination of the delta-9 tetrahydrocannabinol content in hemp varieties

§64 LFGB (German Food and Feed Act) committee affiliation of MXNS Berlin: Participation in development of an official method

GC(-MS/MS) or LC(-MS/MS)

GC-MS/MS

+ Fewer matrix effects

- No dinstinction between acids (e.g. Δ9-THC and Δ9-THC-acid) possible due to decomposition of acids in liner
- Less volatile analytes cannot be analyzed
- → Sufficient for determination of "total THC" (guidance values)
- Compensation of matrix effects necessary (labeled internal standard or standard addition, respectively matrix calibration)
- → Necessary if contents of single compounds are to be determined

LC-MS/MS

Sample preparation at MXNS Berlin

Chromatography

Standard solution 50 ng/mL

² Cannabidivarin	10.60
Δ9-Tetrahydrocannabinolsäure	9,60
Cannabidiol	10,23
Cannabigerol	1928
Tetrahydrocannabivarin	
Cannabinol	1)39
2	Δ9-THC Δ3-THC

Standard solution 50 ng/mL

Chromatographic separation of Δ 9-Tetrahydrocannabinol and Δ 8-Tetrahydrocannabinol is necessary because MRMs are identical and limits only refer to Δ 9-Tetrahydrocannabinol

Analytical challenges

High range of concentrations between different analytes

Example: CBD-oil

Cannabidiol:	45 g/kg
Δ9-THC:	3.3 mg/kg
∆9-THC-acid:	1.6 mg/kg
Cannabinol:	<1 mg/kg

if necessary LOQ of 10 µg/kg each

Different dilutions have to be analyzed (due to limited linear range of mass spectrometer); for CBD very high dilution, for traces of cannabinol rather concentrated extract solution

HPLC-system has to be rinsed intensively after analyzing concentrated sample solution (if not: carryover-effects possible)

High range of concentrations between different analytes

Acid-precursors should not be neglected

Example: CBD-oil

declared		
Cannabidiol:	5 g/kg	
analyzed		
Cannabidiol (CBD):	2.5 g/kg	
Cannabidiolic acid (CBDA):	3.0 g/kg	
CBDA calculated as CBD-equivalents:	2.6 g/kg	

Sum of CBD + CBDA (calculated as CBD):

5.1 g/kg

The determination of Δ 9-Tetrahydrocannabinolic acid (THCA-A) is mandatory for calculation of "total THC".

Need for internal standards due to matrix effects

Matrix components cause ion suppression effects → quantification via external calibration leads to false results

- Labeled internal standard for correction necessary; if too expensive or not available at all: matrix calibration or standard addition (= time-consuming) necessary
- Some years ago: labeled Δ9-Tetrahydrocannabinolic acid was not yet commercially available; standard addition for every sample not praticable; custom synthesis very expensive; affordable as centralized buying with colleagues from other laboratories

Other challenges

Need for authorization due to drug regulations

- Δ9-Tetrahydrocannabinol and Δ8-Tetrahydrocannabinol are regulated (in Germany according to German Narcotics Act)
- Laboratories have to apply for authorization (in Germany at BfArM Federal Institute for Drugs and Medical Devices) and have to establish strict regulations in sample and standard management
- Authorizations restrict the field of activity (e. g. food analysis) and the amount of yearly purchasable reference substance.

Bundesinstitut für Arzneimittel und Medizinprodukte **Summary / Outlook**

Our method can be expanded for further cannabinoids on demand in a short time.

MXNS is your competent partner in cannabinoid analysis

For more information please contact:

Jörg Konetzki Head of R&D

Institut Kirchhoff Berlin GmbH

Oudenarder Straße 16 / Carrée Seestraße 13347 Berlin +49 (0) 30/457 98 93-0 www.institut-kirchhoff.de ikb.de@mxns.com