

Development of an improved analytical method

Limitations of the current LC-GC-FID method MOAH vs. Biogenic Components

- in case of disturbances due to matrix components, an additional purification step is necessary
- after epoxidation a "hump" remains for certain samples
- no MOAH, but not epoxidized, biogenic substances

-> "Hump" is assigned to the MOAH by laboratories (false-positive)

-> significant consequences for raw material suppliers and food companies

-> Limit of quantification has to be raised

Toxicological Considerations

- according to the BfR contamination of food with MOAH should be avoided (potentially cancerogenic)
- EFSA: carcinogenic potential correlates with increasing number of aromatic ring systems

EFSA Journal 2012; 10(6): 2704

"MOAH with three or more, non- or simple alkylated, aromatic rings may be mutagenic and carcinogenic and therefore of potential concern."

J Agric Food Chem 2018 Jul 11;66(27):6968-6974

"MOAH of at least 3 (conjugated) aromatic rings may include genotoxic constitutents. For this reason, it seems important to distinguish between MOAH of 1-2 and more aromatic rings."

Rapid risk assessment, EFSA, 15.11.2019, doi:10.2903/sp.efsa.2019.EN-1741 "The potential human health impact of MOH varies widely. Mineral oil aromatic hydrocarbons (MOAH), in particular 3-7 ring MOAH, may act as genotoxic carcinogens, while some mineral oil saturated hydrocarbons (MOSH) can accumulate in human tissue and may caus adverse effects in the liver."

-> GCxGC-TOF-MS can identify occurrence of carcinogenic or mutagenic constituents

- -> separation of the condensed aromatics
- -> limitation due to substance dependent response -> calibration mixture not available

The Solution

- GCxGC can separate the toxicological relevant constituents and is able to eliminate co-elution
- FID can quantify independent of structure

• **advantages**: comprehensive separation efficiency

non-selective detector

Choices

two main strategies are used within the GCxGC community

Reverse Setup

Normal Setup

6

Reverse Setup

7

sensitivity

- consider and if possible eliminate the blank
- in case of reverse setup: are the n-alkanes still valid as fraction markers?
 What is the influence of the polar first dimension?
- comparability to LC-GC-FID (How to handle sharp peaks on the hump?)
- ensure that no discrimination occurs (ratio n-C10/n-C20 and n-C50/n-C20 not less than 80 %)

Difficulties

Sensititvity

• Minimum amount of MOH for the FID to be detectable circa **25 ng absolute**

contour plot of 20 ng MOAH absolute after blank subtraction

Sensitivity

- different techniques to achieve the needed sensitivity:
 - concentration of sample prior to injection
 - variety of different injection techniques:
 - splitless injection
 - large volume injection via PTV (MMI or Optic injector)
 - large volume on column injection
 - retention gap technique using SVE

- humps are detected with non selective detector \rightarrow blank can lead to incorrect quantification
- is depending on choice of columns
- normal setup is in advantage due to available low bleeding MXT-1 steel capillary columns
- for reverse setup high temperature polar columns often higher column bleeding
- choice has to be carefully made

Blank GCxGC-FID

• Example for two different polar columns in the first dimension:

Column 1

Influence of Polar Column LC-GC-FID

- **Question:** What is the effect of polar first dimension on first dimension retention time of MOAH?
- mix of alkylated aromatic compounds was measured by LC-GC-FID to determine MOAH fraction they belong to and relative retention time

Influence of Polar Column GCxGC-FID

- experiment repeated on GCxGC-FID:
- n-alkanes define start of fraction at upper part of contour plot
- shift of polar compounds observed
- 1 9,10 Dihydroanthracene
- 2 1-Methylfluorene
- 3 1-Methylphenanthrene + 1-Methylanthracene
- 4 3,6 Dimethylphenanthrene + 2-Ethylanthracene
- 5 2-Methylfluoranthene
- 6 9,10 Dimethylanthracene
- 7 1-Methylpyrene

Influence of Polar Column

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

Naphthalene Acenaphtylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzanthracen Chrysen Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Indeno(1,2,3-cd)pyren Dibenz(a,h)anthracen Benzo(g,h,i)perylen Dibenzo(a,e)pyren Dibenzo(a,i)pyren Dibenzo(a,h)pyren Dibenzo(a,l)pyren

Peak subtraction

 DIN EN 16995 demands all sharp peaks on top of the hump have to be subtracted for quantification of MOSH and MOAH

Peak subtraction GCxGC-FID

Software assisted handling of sharp peaks on to of the hump available

- Marco Nestola improved the automated epoxidation using performic acid
- robust technique, applicable in automated or manual mode
- improved removal of biogenic interferences in MOAH fraction compared to current epoxidation methods using m-CPBA (in ethanol or dichloromethane)
- less interferences from epoxidising agent

 \rightarrow in combination with GCxGC-FID a further tool to lower the LOQ for interfered samples

$$H + H_2O_2 = H + H_2O_1 + H_2O_2$$

New Epoxidation Technique Strongly Interfered Palm Olein

Epoxidation using performic acid

Masses: XIC(105±0.5)

Epoxidation using m-CPBA

LC-GC-FID

- GCxGC-FID good tool to overcome current problems of LC-GC-FID technique
- applicable especially for fat/oil samples and to asses toxicological relevance of MOAH fraction
- different techniques to achieve needed sensitivity
- blank can be minimized
- n-alkanes invalid as fraction markers for the complete contour plot (find the right angle)
- discrimination and sharp peaks on the hump can be handled

(Bauwens, Panto, Purcaro, J Chrom. A 1643 (2021) 462044)

Acknowledgements

Thanks to:

- Axel Semrau scientific discussions and cooperation on the new Nestola epoxidation technique
- **LECO** software and technical support
- Michael Koch (Institut Kirchhoff Berlin part of Mérieux NutriSciences)

the work I am honoured to present

Institut Kirchhoff Berlin GmbH

Oudenarder Straße 16 / Carrée Seestraße 13347 Berlin Tel.: +49 (0) 30/457 98 93-143 susanne.kuehn@mxns.com www.institut-kirchhoff.de